

Matemáticas Grado superior 2023

Apellidos y Nombre	
NIF/NIE	

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR MAYO 2023

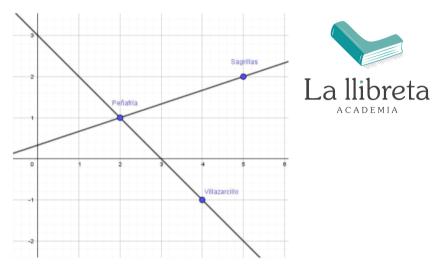
PARTE COMÚN: MATEMÁTICAS

Duración: 1 hora 15 minutos

OBSERVACIONES: Se puede usar calculadora. Los ejercicios deben estar resueltos paso a paso y con las explicaciones oportunas.

1) La siguiente tabla muestra, para una serie de productos, el precio que tenían el año pasado en este mes (precio inicial), el porcentaje de aumento o disminución que ha sufrido su precio en los últimos doce meses (variación porcentual) y el precio actual (precio final). Por desgracia, se ha borrado el contenido de algunas casillas. Efectúa los cálculos necesarios para recuperar el contenido perdido (0,5 puntos por casilla)

PRODUCTO	PRECIO INICIAL	VARIACIÓN PORCENTUAL	PRECIO FINAL
P ₁	965 €	+18%	1.138,7 €
P ₂	4.600 €	- 31%	3.174 €
P ₃	9.150 €		8.875,5 €
P ₄	336 €		409,92 €
P ₅		+16%	324,8 €
P ₆		- 11%	578,5 €


2) (2 puntos). El dueño de un salón de eventos quiere comprar 30 kg de gambas y 80 kg de mejillones, pedido por el que debería pagar 1.680 €. Tras una negociación, consigue que le hagan un descuento del 15% en el precio del kg de gambas y un 8% en el de mejillones, por lo que finalmente paga 1.453,2 € en total. Plantea y resuelve una ecuación o sistema de ecuaciones que te permita posteriormente rellenar las cuatro casillas de la siguiente tabla:

	Precio inicial	Precio pagado
1kg de gambas		
1 kg de mejillones		

3) El siguiente mapa muestra la situación de tres pueblos junto a las dos carreteras rectilíneas que los comunican (las unidades de los ejes están en km):

- a) (1 punto). Calcula la ecuación de la recta correspondiente a la carretera que une Peñafría con Sagrillas.
- b) (0,5 puntos) ¿Cuántos kilómetros hay que recorrer en coche para ir de Villazarcillo a Sagrillas?
- c) (0,5 puntos). A lo largo del eje horizontal OX está emplazado un canal. Obtén el ángulo que forma la carretera de Peñafría-Sagrillas con dicho canal.
- 4) Desde la azotea de un edificio lanzamos hacia arriba una flecha. La altura h, en metros, a la que se encuentra la flecha -respecto al suelo de la calle- viene dada por la siguiente función:

$$h = 24,75 + 45t - 9t^2$$

donde t son los segundos transcurridos desde que se lanza la flecha

- a) (1 punto) ¿En qué instante alcanza la flecha la máxima altura?
- b) (1 punto) ¿En qué momento llega la flecha al suelo?
- 5) En una comunidad de vecinos hay 7 viviendas de 90 m² y 5 viviendas de 100 m². Se eligen al azar dos viviendas para realizar una inspección técnica. Obtén la probabilidad de que:
 - a) (0,5 puntos). Las dos elegidas sean de 90 m²
 - b) (1 punto). Se haya elegido una de cada tipo
 - c) (0,5 puntos). Al menos una sea de 100 m²

Pág. 2/2

1	1
71	١
11	-)
١,	J

PRODUCTO	PRECIO INICIAL	VARIACIÓN PORCENTUAL	PRECIO FINAL
P ₁	965 €	+18%	1.138,7 €
P ₂	4.600 €	- 31%	3.174 €
P ₃	9.150 €	-31.	8.875,5 €
P ₄	336 €	+ 22:/.	409,92 €
P ₅	280€	+16%	324,8 €
P ₆	650€	- 11%	578.5 €

$$P3 \rightarrow \frac{9150}{8815'5} = \frac{100}{x} \rightarrow x = 97\%$$

$$\frac{336}{409'92} = \frac{100}{x} \longrightarrow x = 122.7.$$

- 30 Kg gambas + 80 Kg mejillones = 1680€
 - gambas tienen 15% de descuento o Pagamos el 85%.
 - . mejillones tienen 81. de descuento Pagamas el 921.
 - · con el descuento = 1453'2 €

$$X = gambas$$
 $y = mejillones$ (E/Kg)

$$\rightarrow X = 1680 - 804$$

$$\rightarrow 25'5 \left(\frac{168-89}{3}\right) + 73'6y = 1453'2;$$

$$\frac{4284 - 2044 + 73'69 = 1453'2}{3}$$

$$- + x = \frac{168 - 8 \cdot (4'5)}{3} = 44 € / Kg$$

Precio inicial | Precio can descuento gambas
$$44 €/Kg$$
 | $615.1. = 37.4 €/Kg$ meyillones $4.5 €/Kg$ | $61. = 4.14 €/Kg$

P= Perafras
$$(2,1)$$
 Km $V=Villataroillo (4,-1)$ Km $S=Sagrillas (5,2)$ Km

a) Ec. recta entre P-S

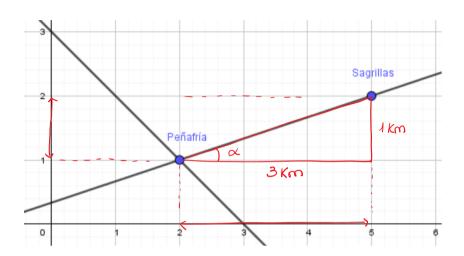
$$P = \begin{pmatrix} x_1 & y_1 \\ 2 & 1 \end{pmatrix} \qquad \frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

$$S = \begin{pmatrix} 5 & 2 \\ 5 & 2 \end{pmatrix}$$

$$\frac{x-2}{5-2} = \frac{y-1}{2-1} \implies \frac{x-2}{3} = \frac{y-1}{1}$$

$$x-2=3y-3$$
 \longrightarrow $x-3y+1=0$ Ec. implicita o general

b) Nos piden la distancia en coche, por lo que debemos ir por la carretera (rectas) desde Villazarcillo a Peñafrías y desde ahí a Sagrillo.


$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d(V,P) = \sqrt{(2-4)^2 + (1+1)^2} = 2\sqrt{2} \text{ km}$$

$$d(P,S) = \sqrt{(5-2)^2 + (2-1)^2} = \sqrt{10} \text{ km}$$

c) cangulo recta P-S con la horizontal x?

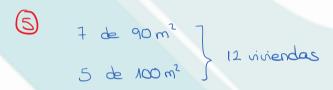
$$t_{3} \propto = \frac{1}{3} \rightarrow \propto = t_{3}^{-1} \left(\frac{1}{3}\right) = 18'43^{\circ}$$

$$h = 24^{1}75 + 45t - 9t^{2} \implies Ec. 2^{\circ} \text{ grado (parabola)}$$

 \angle coincide con la ecuación de tiro vertical en física \rightarrow $y = y_0 + v_0 t - \frac{1}{20}at^2$ (sería otra forma de resolverlo)

a) at? para altura maxima. En una parabola, el maximo se encuentra en el vertice $V = \frac{-b}{3a}$

$$t = \frac{-b}{2a} = \frac{-45}{2(-9)} = 25$$



b) Momento = tiempo en llegar al suelo - altura = 0

$$-9t^{2} + 45t + 24'75 = 0$$

$$t = -b \pm \sqrt{b^{2} - 4ac} = -45 \pm \sqrt{45^{2} + (-9)(24'75)}$$

$$t = -1$$
no piede ser regativo el tiempo

$$\frac{7/12}{5/12} \stackrel{90}{\longrightarrow} \frac{6/11}{5/11} \stackrel{90}{\longrightarrow} \frac{7/11}{4/11} \stackrel{90}{\longrightarrow} \frac{7/11}{4/11} \stackrel{90}{\longrightarrow} \frac{7/11}{4/11} \stackrel{90}{\longrightarrow} \frac{1}{100}$$

a)
$$P(90 \cap 90) = \frac{7}{12} \cdot \frac{6}{11} = \frac{7}{22} = 0.318$$

$$\left(\frac{1}{12},\frac{5}{11}\right) + \left(\frac{5}{12},\frac{7}{11}\right) = \frac{35}{66} = 0.53$$

c) P(900,100) U P(1000,90) U P(100,0100)

$$\frac{35}{66} + \left(\frac{5}{12} \cdot \frac{4}{11}\right) = \frac{15}{22} = 0.681$$

El apartado c) también prede calcularse con el contrario del resultado del apolo a) $\rightarrow 1-0.318 = 0.681$