

Apellidos y Nombre	
NIF/NIE	
Calificación	

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR MAYO 2024 PARTE ESPECÍFICA C QUÍMICA

Duración: 1 hora y 15 minutos

OBSERVACIONES: Responde a 5 de las 6 preguntas propuestas.

Para la realización de la prueba se puede usar calculadora.

Los ejercicios deben estar resueltos paso a paso y con las explicaciones oportunas.

- Mantenga su NIF/NIE en un lugar visible durante la realización de la prueba.
- Lea detenidamente el texto, cuestiones o enunciados.
- Cuide la presentación y la ortografía.
- Revise la prueba antes de entregarla.
- Los criterios de calificación aparecen escritos en cada pregunta.

1. Tenemos 2 moles de oxígeno gas (O2). Indica:

Apellidos y Nombre:	

- a) La masa de gas que tenemos. (0,5 puntos)
- b) El volumen que ocupa este gas en condiciones normales. (0,5 puntos)
- c) El volumen que ocupará a 200°C y 700mmHg de presión. (0,5 puntos)
- d) Si a 50°C ocupa un volumen de 20L, ¿Qué presión tendremos? (0,5 puntos)

Datos: $A_r(O) = 16u$; R = 0.082 atm L·mol⁻¹·K⁻¹; 760mmHg = 1atm.

- 2. Formula o nombra los compuestos siguientes:
 - a) (0,2 puntos cada compuesto)

hidruro de potasio	
cloruro de azufre (VI)	
SO ₂	
KNO ₃	
H ₂ CO ₃	

b) (0,2 puntos cada compuesto)

1,4-pentadieno	
propenal	
Ácido etanodioico	
CH ₂ =CH-CH ₂ -CH ₃	
CH ₂ OH-CH ₃	

- 3. Si tenemos el elemento A (Z= 20 y A=42) y el elemento B (Z=8 y A=17).
 - a) Indica las partículas que constituyen cada elemento. (0,5 puntos)
 - b) Escribe la configuración electrónica de cada uno. (0,5 puntos)
 - c) Indica justificadamente el ion más estable que formará cada uno. (0.5 puntos)
 - d) Explica justificadamente qué enlace formarán al combinarse. (0,5 puntos)
- 4. El TNT, C₇H₅(NO₂)₃, es un explosivo muy potente cuya descomposición se puede representar mediante la siguiente ecuación:

$$2 C_7 H_5(NO_2)_3 (s) \rightarrow 7C(s) + 7 CO (g) + 3 N_2 (g) + 5 H_2O (g)$$

Calcula la entalpía de la reacción. (2 puntos)

DATOS: Entalpías de formación estándar: ΔH°_{f} (TNT (s))=-364,1 kJ/mol; ΔH°_{f} (CO (g))=-110,3 kJ/mol; ΔH°_{f} (H₂O (g))=-241,6 kJ/mol

- 5. Calentamos 0,091 moles de hierro con 0,125 moles de azufre y se obtiene sulfuro de hierro (II).
 - a) Escribe y ajusta la reacción (0,5 puntos)
 - b) Determina los moles de sulfuro de hierro (II) que se formarán (indica cuál es el reactivo limitante). (1 punto)
 - c) Calcula los moles que sobran del reactivo en exceso. (0,5 puntos)
- 6. a) Calcula el pH de una disolución de ácido clorhídrico 0,5M. (1punto)

Apellidos y Nombre:	
---------------------	--

b) Calcula el volumen de la disolución anterior que se necesita para neutralizar 25mL de una disolución de hidróxido de sodio 0,2M. La reacción de neutralización es $HCI + NaOH \rightarrow NaCI + H_2O$ (1 punto)