

Solución del examen de química de la PAGS de la Comunidad Valenciana. Convocatoria de 2025

Pregunta 1 (2 puntos)	1
Pregunta 2 (2 puntos)	
Pregunta 3 (2 puntos)	
Pregunta 4 (2 puntos)	
Pregunta 5 (2 puntos)	
Pregunta 6 (2 puntos)	

Pregunta 1 (2 puntos)

Un gas ideal se encuentra a una presión de 2 atm, un volumen de 10 L y una temperatura de 25 °C. Calcular:

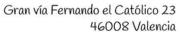
- a) El número de moles de gas presentes y el número de moléculas.
- b) La masa del gas si se trata de oxígeno (O2).

Datos:
$$R = 0.082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$
, $Ar(O) = 16,0u$

Solución:

Datos:

Aplicando la ecuación de los gases ideales PV=nRT \rightarrow n = $\frac{PV}{RT}$


Con P = 2 atm, V = 10 L y R = 0,082:
$$n = \frac{2 \cdot 10}{0,082 \cdot 298} \rightarrow n = 0,818 \text{ mol de } O_2$$

Con N_A se calcula el número de moléculas:

 $N_A=6.022 \times 10^{23}$ moléculas/mol

$$0.818 \text{ mol} \cdot \frac{6.022 \cdot 10^{23} \, mol \acute{e} culas}{1 \, mol} = 4.93 \cdot 10^{23} \, mol \acute{e} culas \, de \, O_2$$

b) Podemos hallar la masa a partir de los moles y $Mr(O_2) = 32 \text{ g/mol}$:

$$n=\frac{m}{Mr} \rightarrow m=n \cdot Mr \rightarrow m=0.818 \cdot 32 \rightarrow m=26.2 \text{ g de O}_2$$

Pregunta 2 (2 puntos)

Dados los siguientes elementos desconocidos ²³₁₁X, ¹⁶₈Y, ²⁰₁₀Z, indica:

- a. El número atómico (Z), el número másico (A), el nº de protones, el número de neutrones y el número de electrones (0,5 puntos)
 - b. La configuración electrónica (0,75 puntos)
 - c. Justifica a partir de la configuración electrónica su ubicación en la tabla periódica (grupo y periodo) su posible valencia y su carácter metálico o no. (0,75 puntos)

Solución:

Elemento X

○ **Z=11**

∘ A=23

o Protones: 11

○ Neutrones: 23 – 11 = 12

o Electrones (átomo neutro): 11

Elemento Y

∘ Z=8

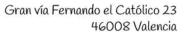
o A=16

o Protones: 8

Neutrones: 16 - 8 = 8

Electrones (átomo neutro): 8

Elemento Z


○ Z=10

o A=20

o Protones: 10

o Neutrones: 20 - 10 = 10

Electrones (átomo neutro): 10

a) X(Z=11): $1s^22s^22p^63s^1$ Y(Z=8): $1s^22s^22p^4$ Z(Z=10): $1s^22s^22p^6$

b) **X(Z=11):** 1s²2s²2p⁶3s¹ (grupo 1; periodo 3); valencia +1 (tendencia a perder 1 electrón para adquirir la configuración de gas noble 1s²2s²2p⁶) y carácter metálico.

Y(Z=8): 1s²2s²2⁴ (grupo 16; periodo 2); valencia -2 (tendencia a ganar 2 electrones para adquirir la configuración de gas noble 1s²2s²2p⁶) y carácter no metálico.

Z(Z=10): 1s²2s²2p⁶ (grupo 18, periodo 2); Gas noble, es estable y no forma iones.

Pregunta 3 (2 puntos)

Considera la combustión completa del propano (C_3H_8) con oxígeno (O_2) para formar dióxido de carbono (CO_2) y agua (H_2O) :

- a. Escribe y ajusta la reacción (0,5 puntos)
- b. Calcula la entalpía de la reacción a partir de las energías de enlace e indica si se trata de una reacción endotérmica o exotérmica (1,5 puntos)

Datos:

- Energía de enlace C-H: 413 kJ/mol
- Energía de enlace C-C: 348 kJ/mol
- Energía de enlace O=O: 498 kJ/mol
- Energía de enlace C=O: 799 kJ/mol
- Energía de enlace O-H: 463 kJ/mol

Solución:

- a) La reacción ajustada es: $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$
- b) La entalpía de reacción se calcula a partir de las entalpías de los enlace rotos y los formados según:

 ΔH° (reacción) = $\sum \Delta H^{\circ}$ (enlaces rotos) – $\sum \Delta H^{\circ}$ (enlaces formados).

- Rotura de enlaces (reactivos):
 - 8 × (C–H) = 8 × 413 kJ/mol = 3 304 kJ

• Formación de enlaces (productos):

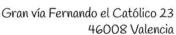
Por tanto:

 ΔH^{o} (reacción) = $\sum \Delta H f^{o}$ (enlaces rotos) - $\sum \Delta H f^{o}$ (enlaces formados)

 ΔH° (reacción) = 6490 - 8498 = -2 008 kJ (para la reacción tal y como está escrita).

Como ΔH^o (reacción) es negativo (–2 008 kJ) la reacción es exotérmica.

Pregunta 4 (2 puntos)


La reacción del carbonato de calcio (CaCO₃) con el ácido clorhídrico (HCI) produce cloruro de calcio (CaCl₂), dióxido de carbono (CO₂) y agua (H₂O)

- a) Escribe y ajusta la reacción. (0,5 puntos)
- b) Si combinamos 12 gramos de CaCO₃ con una pureza del 85% y 150 ml de disolución de HCI de concentración 1M. Comprueba si reaccionarán completamente y en caso de no hacerlo indica cuál es el reactivo limitante. (1 punto)
- c) Calcula el volumen de CO₂ que se obtendrá a T=O°C y P=1 atm (condiciones normales). (0,5 puntos)

Datos: Ar(Ca)=40,08u, Ar(O)=16u, Ar(C)=12,01u, Ar(H)=1,01u, Ar(Cl)=35,446u

Solución:

- a) La reacción ajustada es: CaCO₃ + 2 HCI → CaCl₂ + CO₂ + H₂O
- b) Hallamos los moles correspondientes a 12 gramos de CaCO₃ con una pureza del 85%:

12 g×0,85=10,20 g puros

10,20 mol CaCO₃·
$$\frac{1 \, mol \, CaCO_3}{100,09 \, g \, CaCO_3}$$
= 0,102 mol CaCO₃

Hallamos los moles correspondientes a 150 mL (0,15L) de disolución HCl 1M:

$$M=\frac{n}{V} \rightarrow n=M \cdot V \rightarrow n=1 \cdot 0,150 \rightarrow n=0,150 \text{ mol HCl}$$

Hallamos el RL, calculando los moles de HCl necesarios para reaccionar con todo el CaCO₃:

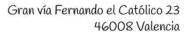
 $0,102 \text{ mol CaCO}_3$ · $\frac{2 \, mol \, HCl}{1 \, mol \, CaCO_3}$ =0,204 mol HCl. Como solo se dispone de 0,150 mol, los reactivos no reaccionarán completamente y la disolución de HCl es el RL

c) A partir de los moles de HCl (RL) obtenemos, por estequiometría, los moles de CO₂ que se formarán y como en condiciones normales 1 mol de cualquier gas ocupa 22,4L, obtenemos el volumen de CO₂ que se produce:

0,150 mol HCI·
$$\frac{1 \, mol \, CO_2}{2 \, mol \, HCl}$$
 · $\frac{22,4 \, L \, CO_2}{1 \, mol \, CO_2}$ = 1,68 L CO₂

Pregunta 5 (2 puntos)

Se neutraliza una disolución acuosa de ácido perclórico ($HClO_4$) con hidróxido de calcio ($Ca(OH)_2$) obteniéndose perclorato de calcio ($Ca(ClO_4)_2$) y agua (H_2O).


- a. Escribe y ajusta la reacción de neutralización. (0,5 puntos)
- b. ¿Cuántos moles de ácido perclórico son necesarios para reaccionar con 20ml de hidróxido de calcio 0,1M? (0,75 puntos)
- c. Si sabemos que en esta neutralización se han empleado 50mL de una disolución de ácido perclórico de molaridad desconocida, averigua el pH de la disolución. (0,75 puntos)

Solución:

- a) La reacción ajustada es: 2HClO₄ + Ca(OH)₂ → Ca(ClO₄)₂ + 2H₂O
- b) Hallamos los moles de ácido perclórico por estequiometría a partir de los moles de la disolución de hidróxido de calcio (20mL(0,02L) 0,1M):

$$M=\frac{n}{V} \rightarrow n=M \cdot V \rightarrow n=0,1 \cdot 0,02 \rightarrow n=0,002 \text{ mol Ca(OH)}_2$$

Por estequiometría:

 $0,002 \text{ mol Ca}(OH)_2 \cdot \frac{2 \, mol \, HClO_4}{1 \, mol \, Ca(OH)_2} = 0,004 \, mol \, HClO_4$

c) Como para calcular el pH de la disolución de ácido perclórico (HClO₄) necesitamos conocer su molaridad, la calculamos a partir de los moles que han reaccionado, hallados en b) y el volumen que nos dicen que se ha empleado:

moles de ácido perclórico (HClO₄): 0,004 mol

volumen de disolución: 50mL (0,05L)

La molaridad o [HClO₄] será: $M=\frac{n}{V} \rightarrow M=\frac{0,004}{0.05} \rightarrow M=0,08M$

Como se trata de un ácido fuerte, la disociación es completa y por tanto $[HCIO_4]=[H^+]=0.08M$.

Por tanto: pH=-log[H⁺] \rightarrow pH=-log[0,08] \rightarrow pH=1,10

Pregunta 6 (2 puntos)

Nombra o formula los siguientes compuestos:

KNO₃

 \bullet Fe₂O₃

Hidróxido de magnesio

Dicloruro de zinc

Propano

Ácido butanoico

• CH₃COCH₃

CH₃CH₂OH

etilmetiléter

Solución:

Nitrato de potasio

Trióxido de dihierro

 $Mg(OH)_2$

ZnCl₂

CH₃CH₂CH₃

CH₃CH₂CH₂COOH

Propanona

Etanol

CH₃CH₂OCH₃