PROBLEMA B.3. Se desea construir un campo rectangular con vértices A, B, C y D de manera que: Los vértices A y B sean puntos del arco de la parábola $y = 4 - x^2$, $-2 \le x \le 2$, y el segmento de extremos A y B es horizontal.

Los vértices C y D sean puntos del arco de la parábola $y = x^2 - 16$, $-4 \le x \le 4$, y el segmento de extremos C y D es horizontal.

Los puntos A y C deben tener la misma abcisa, cuyo valor es el número real positivo x.

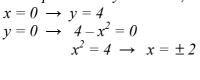
Los puntos B y D deben tener la misma abcisa, cuyo valor es el número real negativo -x.

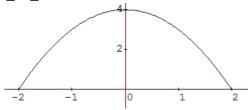
Se pide obtener razonadamente:

- a) La expresión S(x) del área del campo rectangular en función del número real positivo x. (4 puntos)
- b) El número real positivo x para el que el área S(x) es máxima. (4 puntos)
- c) El valor del área máxima. (2 puntos)

Solución:

El arco de parábola $y = 4 - x^2, -2 \le x \le 2$ será:



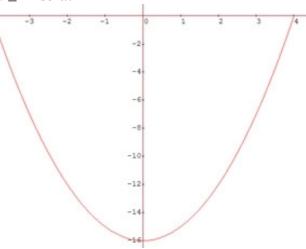


El arco de parábola $y = x^2 - 16$, $-4 \le x \le 4$ será:

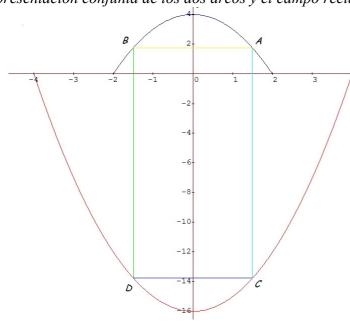
$$x = 0 \rightarrow y = -16$$

$$y = 0 \rightarrow x^{2} - 16 = 0$$

$$x^{2} = 16 \rightarrow x = \pm 4$$



La representación conjunta de los dos arcos y el campo rectangular será:



Las coordenadas de los puntos son: $A(x, 4-x^2)$, $B(-x, 4-x^2)$ $C(x, x^2-16)$, $D(-x, x^2-16)$

Por construcción $x \in (0, 2]$

a) El área del campo rectangular será:
La base del rectángulo mide
$$2x$$

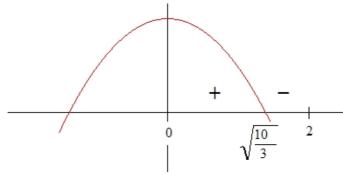
La altura del rectángulo mide $4-x^2-(x^2-16)=4-x^2-x^2+16=20-2$ x^2
Por lo que $S(x)=2$ x $(20-2$ $x^2)=40$ $x-4$ x^3 , $x \in \{0,2\}$

$$S'(x) = 40 - 12 x^2, x \in (0, 2]$$

$$40 - 12 x^2 = 0$$
; $12 x^2 = 40$; $x^2 = \frac{40}{12}$; $x = \pm \sqrt{\frac{40}{12}} = \pm \sqrt{\frac{10}{3}}$. $Como \ x \in (0,2] \rightarrow x = \sqrt{\frac{10}{3}} = 1825 \in (0,2]$

Calculemos el máximo de forma gráfica.

$$S'(x)$$
 es un polinomio de 2º grado con coeficiente de x^2 negativo y raíces $\pm \sqrt{\frac{10}{3}}$



Por lo tanto en $x = \sqrt{\frac{10}{3}}$ hay un máximo absoluto ya que a la izquierda S'(x) es creciente y a la derecha decreciente. Es decir, S(x) es máxima para $x = \sqrt{\frac{10}{3}}$.

$$S\left(\sqrt{\frac{10}{3}}\right) = 40\sqrt{\frac{10}{3}} - 4\left(\sqrt{\frac{10}{3}}\right)^3 = 40\sqrt{\frac{10}{3}} - 4\frac{10}{3}\left(\sqrt{\frac{10}{3}}\right) = \left(40 - \frac{40}{3}\right)\sqrt{\frac{10}{3}} = \frac{80}{3}\sqrt{\frac{10}{3}} \cong 48'6864u^2$$

El valor del área máxima es de aproximadamente 48'6864 u².