

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 306 - MATEMÁTICAS II PAU2026 - EJEMPLO

NOTA IMPORTANTE: Las preguntas se pueden hacer en cualquier orden. Las preguntas 1, 2 y 3 son obligatorias. En la pregunta 4 solo hay que contestar la 4.1 o la 4.2. En la pregunta 5 solo hay que contestar la 5.1 o la 5.2. Si se responden las 2 opciones de la pregunta 4 o 5 solo se corregirá la primera opción contestada. La puntuación máxima de cada pregunta es de 2 puntos. Solo se podrán usar las tablas estadísticas que se adjuntan. No se podrán usar calculadoras gráficas ni programables.

PARTE A (preguntas 1, 2 y 3). Conteste TODAS los preguntas de esta parte.

Pregunta 1.

CONTEXTO

La caída de los tipos de interés en el segundo semestre de 2024 permitió a las familias ahorrar alrededor de 200 euros al mes en comparación con lo que venían pagando por sus hipotecas y préstamos. Este ahorro equivalía a más de 2000 euros anuales. Ante este escenario, los bancos ofrecieron condiciones más atractivas para captar clientes, lo que generó una fuerte competencia entre las entidades. Una de ellas lanzó los siguientes productos: Préstamo 24 Horas, Préstamo Auto y Préstamo Estudia. Cada cliente podía contratar, como máximo, uno de ellos.

La política de la empresa determinó que el reparto final de los préstamos concedidos fuera el siguiente: un 45% correspondió a Préstamos 24 Horas, un 40% a Préstamos Auto y un 15% a Préstamos Estudia. Además, se analizó el porcentaje de impago en estos productos, que fue del 20% en Préstamos 24 Horas, del 30% en Préstamos Auto y del 25% en Préstamos Estudia.

Basándose en el contexto anterior, responda estos cuatro apartados:

- (a) [0.5 puntos] Seleccionado un préstamo al azar, calcule la probabilidad de que no se haya pagado.
- (b) [0.5 puntos] Sabiendo que no se pagó un préstamo, calcule la probabilidad de que sea un Préstamo Auto.
- (c) [0.5 puntos] Si se pagó el préstamo, calcule la probabilidad de que sea un Préstamo Estudia.
- (d) [0.5 puntos] Según los datos proporcionados por el enunciado, indique dos sucesos relacionados con este problema que sean incompatibles. Justifique la respuesta.

Pregunta 2. Responda justificadamente los siguientes apartados:

- (a) [1 punto] Calcule el área comprendida entre las gráficas de las funciones $f(x) = x^2$ y g(x) = |x|.
- (b) [0.5 puntos] Razone, sin calcular la integral, si $\int_1^2 xe^x dx$ tiene signo positivo o negativo.
- (c) [0.5 puntos] Calcule la integral $\int_{1}^{2} xe^{x} dx$.

Pregunta 3. Una fábrica de productos químicos produce 3 fármacos diferentes. Anualmente, esta fábrica tiene 4 clientes que, durante el mes de febrero, realizaron pedidos y/o devoluciones. Dichos datos (en miles de unidades) se han recogido en la siguiente matriz

$$\begin{pmatrix}
9 & 5 & 2 \\
3 & 8 & 0 \\
0 & 0 & 0 \\
6 & 7 & -1
\end{pmatrix}$$

- (a) [0.5 puntos] Indique qué representan las filas y las columnas, y especifique cuáles son las compras que ha hecho cada cliente durante el mes de febrero.
- (b) [1.5 puntos] Sabiendo que el primer cliente ha gastado un total de 3250 €, el segundo un total de 2850 € y el cuarto un total de 2800 €, ¿cuál es el precio por unidad de cada fármaco?

PARTE B (preguntas 4 y 5).

Pregunta 4. Conteste solo UNA de las siguientes preguntas (4.1 o 4.2).

- **4.1** Sea $f: \mathbb{R} \to \mathbb{R}$ la función dada por $f(x) = \arctan(x + \pi)$, donde arctg denota la función arcotangente.
- (a) [1 punto] Determine los intervalos de concavidad y de convexidad de f. Estudie y halle, si existen, los puntos de inflexión de f (abscisas donde se obtienen y valores que se alcanzan).

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 306 – MATEMÁTICAS II PAU2026 - EJEMPLO

- (b) $[\mathbf{0.5} + \mathbf{0.5} = \mathbf{1} \text{ punto}]$ Calcule $\lim_{x \to -\pi} \frac{f(x)}{\operatorname{sen}(x)}$. ¿Cuál sería el valor del límite si cambiamos en el denominador $\operatorname{sen}(x)$ por g(x), siendo $g(x) = \operatorname{sen}(x)$ si $x \neq -\pi$ y $g(-\pi) = 2$?
 - 4.2 La suma de los perímetros de un cuadrado y un triángulo equilátero es 100 metros.
- (a) [1.5 puntos] ¿Cuáles deben ser las medidas de los lados del cuadrado y del triángulo para que la suma de sus áreas sea mínima?
- (b) [0.5 puntos] ¿Es posible determinar las medidas de los lados del cuadrado y del triángulo para que la suma de sus áreas sea máxima?

Pregunta 5. Conteste solo UNA de las siguientes preguntas (5.1 o 5.2).

- **5.1** Responda justificadamente los siguientes apartados:
- (a) [1.5 puntos] Sean $\pi_1 : mx + y z = m 2, \pi_2 : x + y + 2z = 0$ y $\pi_3 : 3x + my + z = m 2$ tres planos. Estudie su posición relativa en función del parámetro m.
- (b) [0.5 puntos] En el caso de que sean secantes en un punto, ¿podría tener ese punto las dos primeras coordenadas diferentes?
- 5.2 Responda justificadamente los siguientes apartados:
- (a) [0.5 + 0.5 = 1 punto] Considere el triángulo de vértices A(0,0,0), B(2,4,0) y C(5,0,0). Utilizando productos vectoriales calcule su área, y compruebe el resultado mediante otro método.
- (b) [1 punto] Calcule la distancia del punto P(2,4,2) al plano que pasa por los puntos A(0,0,0), C(5,0,0) y D(0,0,3).