Proves d'Accés per a Majors de 25 i 45 anys

Pruebas de Acceso para Mayores de 25 y 45 años

Convocatòria: Convocatoria:

SISTEMA UNIVERSITARI VALENCIA SISTEMA UNIVERSITARIO VALENCIANO

2025

Assignatura: Química Asignatura: Química

Cal resoldre quatre questions de les sis proposades. Cadascuna s'avaluarà de 0 a 2,5 punts. Es permet l'ús de calculadores sempre que no siguen gràfiques o programables i que no puguen realitzar càlcul simbòlic ni emmagatzemar text o fórmules en memòria. Si es contesten més questions, només es corregiran les quatre primeres.

Qüestió 1. (2,5 punts)

- a) Escriga la configuració electrònica de l'estat fonamental de cadascuna de les espècies químiques següents: Be²⁺; Cl; Cl⁻. (1,5 punts)
- b) Dibuixe l'estructura electrònica de Lewis de les espècies químiques següents i prediga la seua geometria molecular: CCl₄; H₃O⁺. (1 punt)

Dades: nombres atòmics, Z: H = 1; Be = 4; C = 6; O = 8; Cl = 17.

Qüestió 2. (2,5 punts)

L'obtenció de clor molecular, Cl₂, es pot dur a terme al laboratori per reacció del diòxid de manganès, MnO₂, amb àcid clorhídric, HCI. En el procés es formen també diclorur de manganès, MnCl₂ i aigua, segons l'equació química, **no** aiustada:

$$MnO_2(s) + HCl(aq) \rightarrow Cl_2(g) + MnCl_2(aq) + H_2O(l)$$

- a) Ajuste l'equació química. (0,5 punts)
- b) Calcule la quantitat, en grams, de MnO₂ necessària per a obtindre 100 L de Cl₂, mesurats a 15 °C i 720 mmHg. (1 punt)
- c) Calcule el volum d'una dissolució d'àcid clorhídric de concentració 4mol·L⁻¹ que caldrà utilitzar per a obtindre la quantitat de Cl₂ de l'apartat anterior. (1 punt)

Dades: 1 atm = 760 mmHg. R = 0.082 atm·L·K⁻¹·mol⁻¹. Masses atòmiques relatives: H = 1; O = 16; Cl = 35.5; Mn = 55.

Qüestió 3 (2,5 punts)

Un recipient de 10 L conté una mescla gasosa constituïda inicialment per 1 mol de dihidrogen, H₂, i 1 mol de iode molecular, I₂. El recipient es calfa a una temperatura de 400 °C i es produeix la reacció següent:

$$H_2(g) + I_2(g) \leftrightarrows 2 HI(g)$$

Sabent que el valor de $K_c(400 \, {}^{\circ}\text{C})$ és 64,8, calcule:

- a) La quantitat, en mols, de tots els gasos presents en l'equilibri. (1,5 punts)
- **b)** El valor de K_p a la temperatura de treball. (1 punt)

Qüestió 4. (2,5 punts)

Es disposa d'una dissolució A, que conté 3,65 g de HCl per litre de dissolució, i una altra dissolució B, que conté 20,00 g de NaOH per litre de dissolució.

- a) Calcule el pH de cadascuna d'aquestes dissolucions. (1 punt)
- b) Calcule el pH de la dissolució generada en mesclar 50 mL de totes dues dissolucions. Supose que els volums són additius. (1,5 punts)

Dades: masses atòmiques relatives: H = 1; O = 16; Na = 23; Cl = 35,5.

Qüestió 5. (2,5 punts)

a) Es disposa de guatre dissolucions aguoses, de concentració 1 mol·L⁻¹, que contenen les espècies: $Cr_2O_7^{2-}(aq)$; $MnO_{\Delta}^{-}(aq)$; $Cr^{3+}(aq)$ i $Mn^{2+}(aq)$, respectivament. Indique, justificadament, si les reaccions següents es produiran espontàniament o no: (1 punt)

i)
$$Cr_2O_7^{2-}(aq) + MnO_4^{-}(aq)$$

ii)
$$Cr_2O_7^{2-}(aq) + Mn^{2+}(aq)$$

iii)
$$Cr^{3+}(aq) + MnO_4^{-}(aq)$$

iv) $Cr^{3+}(aq) + Mn^{2+}(aq)$

- b) En aquelles reaccions que es produïsquen espontàniament, indique quina espècie actuarà com a oxidant i quina com a reductora. (0,5 punts)
- c) Calcule el potencial estàndard de la reacció o reaccions que es produïsquen espontàniament. (1 punt)

Dades: potencials de reducció estàndard, $E^{0}(V)$: $(MnO_{4}^{-}|Mn^{2+}) = +1,51$; $E^{0}(Cr_{2}O_{7}^{2-}|Cr^{3+}) = +1,33$.

Qüestió 6. (2,5 punts)

- a) Formule o anomene els compostos següents: i) CH₃CH₂OH; ii) CH₃CH₂COCH₃; iii) CaF₂; iv) sulfat de calci; v) clorur d'amoni. (1,25 punts)
- b) Es disposa d'una dissolució aquosa de CuSO₄ de concentració 0,5 mol·L⁻¹. Calcule el volum que cal prendre per a preparar 150 mL d'una altra dissolució, de concentració c' = 0.25 mol·L⁻¹. (1.25 punts)

Proves d'Accés per a Majors de 25 i 45 anys

Pruebas de Acceso para Mayores de 25 y 45 años

Asignatura: Química

Assignatura: Química

almacenar texto o fórmulas en memoria. Si se contestan más cuestiones, solo se corregirán las cuatro primeras.

Convocatòria: Convocatoria:

2025

SISTEMA UNIVERSITARI VALENCIA SISTEMA UNIVERSITARIO VALENCIA GENERALITAT

Se resolverán cuatro cuestiones de las seis propuestas. Cada una de ellas se evaluará de 0 a 2,5 puntos. Se permite el

Cuestión 1. (2,5 puntos)

a) Escriba la configuración electrónica del estado fundamental de cada una de las siguientes especies químicas: Be²⁺; Cl; Cl⁻. (1,5 puntos)

uso de calculadoras siempre que no sean gráficas o programables y que no puedan realizar cálculo simbólico ni

b) Dibuje la estructura electrónica de Lewis de las siguientes especies químicas y prediga su geometría molecular: CCl₄; H₃O⁺. (1 punto)

Datos: números atómicos, *Z*: H = 1; Be = 4; C = 6; O = 8; Cl = 17.

Cuestión 2. (2,5 puntos)

La obtención de cloro molecular, Cl₂, se puede llevar a cabo en el laboratorio por reacción del dióxido de manganeso, MnO₂, con ácido clorhídrico, HCl. En el proceso se forman también dicloruro de manganeso, MnCl₂, y agua, según la ecuación química, **no ajustada**:

$$MnO_2(s) + HCI(ac) \rightarrow Cl_2(g) + MnCl_2(ac) + H_2O(l)$$

- a) Ajuste la ecuación química. (0,5 puntos)
- b) Calcule la cantidad, en gramos, de MnO₂ necesaria para obtener 100 L de Cl₂, medidos a 15 °C y 720 mmHg. (1 punto)
- c) Calcule el volumen de una disolución de ácido clorhídrico de concentración 4 mol·L⁻¹ que habrá que utilizar para obtener la cantidad de Cl₂ del apartado anterior. (1 punto)

Datos: 1 atm = 760 mmHg. R = 0.082 atm·L·K⁻¹·mol⁻¹. Masas atómicas relativas: H = 1; O = 16; Cl = 35,5; Mn = 55.

Cuestión 3 (2,5 puntos)

Un recipiente de 10 L contiene una mezcla gaseosa constituida inicialmente por 1 mol de dihidrógeno, H₂, y 1 mol de yodo molecular, I₂. El recipiente se calienta a una temperatura de 400 °C, produciéndose la siguiente reacción:

$$H_2(g) + I_2(g) \leftrightarrows 2 HI(g)$$

Sabiendo que el valor de $K_c(400 \, {}^{\circ}\text{C})$ es 64,8, calcule:

- a) La cantidad, en moles, de todos los gases presentes en el equilibrio. (1,5 puntos)
- **b)** El valor de K_p a la temperatura de trabajo. **(1 punto)**

Cuestión 4. (2,5 puntos)

Se dispone de una disolución A, que contiene 3,65 g de HCl por litro de disolución, y otra disolución B, que contiene 20,00 g de NaOH por litro de disolución.

- a) Calcule el pH de cada una de estas disoluciones. (1 punto)
- b) Calcule el pH de la disolución generada al mezclar 50 mL de ambas disoluciones. Suponga que los volúmenes son aditivos. (1,5 puntos)

Datos: masas atómicas relativas: H = 1; O = 16; Na = 23; Cl = 35,5.

Cuestión 5. (2,5 puntos)

a) Se dispone de cuatro disoluciones acuosas, de concentración 1 mol· L^{-1} , que contienen las especies: $Cr_2O_7^{-2}$ (ac); $MnO_4^{-}(ac)$; $Cr^{3+}(ac)$ y $Mn^{2+}(ac)$, respectivamente. Indique, justificadamente, si las siguientes reacciones se producirán espontáneamente o no: (1 punto)

i)
$$Cr_2O_7^{2-}(ac) + MnO_4^{-}(ac)$$

ii)
$$Cr_2O_7^{2-}(ac) + Mn^{2+}(ac)$$

iii)
$$Cr^{3+}(ac) + MnO_4^{-}(ac)$$

iv) $Cr^{3+}(ac) + Mn^{2+}(ac)$

- b) En aquellas reacciones que se produzcan espontáneamente, indique qué especie actuará como oxidante y cuál como reductora. (0,5 puntos)
- c) Calcule el potencial estándar de la reacción o reacciones que se produzcan espontáneamente. (1 punto)

Datos: potenciales de reducción estándar, $E^{o}(V)$: $(MnO_4^{-1}|Mn^{2+}) = +1,51$; $(Cr_2O_7^{2-1}|Cr^{3+}) = +1,33$.

Cuestión 6. (2,5 puntos)

- a) Formule o nombre los siguientes compuestos: i) CH₃CH₂OH; ii) CH₃CH₂COCH₃; iii) CaF₂; iv) sulfato de calcio; v) cloruro de amonio. (1,25 puntos)
- b) Se dispone de una disolución acuosa de CuSO₄ de concentración 0,5 mol·L⁻¹. Calcule el volumen que es necesario tomar para preparar 150 mL de otra disolución, de concentración $c' = 0.25 \text{ mol} \cdot \text{L}^{-1}$. (1,25 puntos)