Prueba de Acceso a la Universidad para Mayores de 25 Años - 2007

Nombre de la Materia FÍSICA

- El examen consta de 5 preguntas todas ellas con un valor máximo de 2 puntos.
- En las respuestas se han de incluir todos los cálculos y no sólo los resultados finales. No utilizar lápiz ni bolígrafo rojo. Se puede usar calculadora.
- No es necesario resolver las cuestiones en orden, ni utilizar una página para cada una, siempre y cuando estén claramente numeradas.
- 1) Un avión efectúa diariamente un viaje de ida y vuelta entre dos ciudades que distan 1000 km. Un día de fuerte viento el avión invierte 2 h en el viaje de ida, con el viento a su favor, y 2.5 h en el de vuelta, con el viento en contra.
 - a) Obtener en unidades de m/s la velocidad del avión en un día sin viento.
 - b) ¿Cuánto tiempo duraría el viaje en las condiciones del apartado a)?

Nota: Supóngase que la trayectoria es rectilínea y despréciense todos los efectos aerodinámicos y de rozamiento entre el aire y el avión.

- 2) Un bloque de 25 Kg se encuentra sobre una superficie plana sometido a la acción de dos fuerzas: F_1 =15 N dirigida en el sentido positivo del eje X, y F_2 =10 N en el sentido negativo del eje Y.
 - a) Expresar la fuerza resultante en forma vectorial y calcular su módulo.
 - b) Obtener la aceleración del bloque y el ángulo que forma la dirección de desplazamiento con el eje \mathbf{X} .

Nota: Despréciense todos los efectos de rozamiento entre el bloque y el plano.

- 3) Un bloque de 6 Kg desliza, por una superficie sin rozamiento, desde el punto A (situado a una altura de 1 m) hasta el punto B, tal y como se ve en la figura. Una vez el bloque alcanza el punto B, el movimiento continúa sobre un plano horizontal con rozamiento. Debido a la fuerza de rozamiento el bloque se detiene después de recorrer 2.5 m desde el punto B.
 - a) Obtener la velocidad del bloque cuando éste alcanza el punto B.
 - b) A partir del trabajo desarrollado por la fuerza de rozamiento hasta que el bloque se para, obtener el valor del coeficiente de rozamiento entre el bloque y la superficie horizontal.

A A B

Nota: Considérese $g = 10 \text{ m/s}^2$.

Prueba de Acceso a la Universidad para Mayores de 25 Años - 2007

4)	Una	partícula	describe	un	movimiento	armónico	simple	de	frecue	ncia
	f=2	$.6 \times 10^4 \text{ s}^{-1}$.	La oscilaci	ión c	omienza ($t=0$) cuando e	l desplaz	amie	nto alco	ınza
	su m	áximo valc	or positivo,	es d	ecir $A = 6.5 \times 1$	0^{-3} cm. Ol	otener el	prim	er valor	del
	tiem	oo para el c	cual la partí	cula	se encuentra e	= -2.6	$\times 10^{-3} \mathrm{cm}$			

Advertencia: Seleccionar "Modo RAD" en la calculadora.

- 5) Considérense dos hilos de cobre del mismo volumen, pero donde la longitud del hilo 2 es un 20% mayor que la del hilo 1.
 - a) Obtener la relación entre sus resistencias: R_2/R_1 .
 - b) ¿Cuál debería ser la relación entre las longitudes, es decir L_2/L_1 , para que la resistencia del hilo 2 sea 4 veces mayor que la del hilo 1.