FÍSICA FÍSICA

PROVES D'ACCÉS PER A PERSONES MAJORS DE 25 ANYS PRUEBAS DE ACCESO PARA PERSONAS MAYORES DE 25 AÑOS

60 minuts **60 minutos**

IMPORTANTE

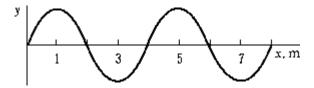
En el plazo máximo de una hora, el alumno deberá resolver las cinco cuestiones propuestas. Cada cuestión debidamente justificada y razonada se calificará con un máximo de 2 puntos. Se valorará la claridad del razonamiento seguido y, en su caso, la adecuada utilización de unidades.

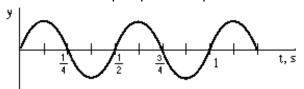
CUESTIÓN I

En una erupción volcánica se expulsa verticalmente hacia arriba un trozo de 2 kg de una roca volcánica porosa con una velocidad inicial de 40 m/s, alcanzando una altura máxima de 50 m antes de que comience a caer hacia la tierra.

- a) ¿Cuál es la energía cinética inicial de la roca?
- **b)** ¿Cuál es la energía potencial gravitatoria de la roca, adquirida durante el ascenso, en el punto de máxima altura?
- c) ¿Cuánta energía térmica se ha generado debido al rozamiento del aire durante el ascenso?

<u>Dato</u>: La aceleración de la gravedad en la superficie terrestre es de 9,81 m/s².

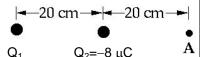

CUESTIÓN II


Supongamos que la Tierra manteniendo su masa actual, fuera comprimida hasta la mitad de su radio.

- **a)** ¿Cuál sería la aceleración de la gravedad en la superficie de este nuevo planeta más compacto respecto a la aceleración gravitatoria terrestre original *g*?
- b) ¿Cuál sería el peso de una persona en este planeta comparado con el que tiene en la Tierra?

CUESTIÓN III

Una onda viaja con una velocidad de propagación v en la dirección positiva del eje x. La gráfica de la izquierda muestra el desplazamiento y con respecto a la distancia x para un instante de tiempo dado. La gráfica de la derecha muestra el desplazamiento y en función del tiempo t para una posición dada x.



- a) ¿Cuál es la longitud de onda de la onda?
- b) ¿Cuál es el periodo de la onda?
- c) ¿Cuánto vale la frecuencia?
- d) ¿Cuál es la velocidad de la onda?

CUESTIÓN IV

Dos cargas puntuales estáticas, Q_1 y Q_2 , se disponen en el espacio tal como se indica en la figura adjunta. Si el campo eléctrico en el punto A es nulo, ¿cuál es el valor de la carga Q_1 ?

CUESTIÓN V

Un motor, conectado a una diferencia de potencial de 220 V está elevando una masa de 35 kg, compensando la fuerza gravitatoria terrestre, a una velocidad constante de 6 m/s.

- a) ¿Cuál es la potencia mecánica desarrollada por el motor?
- b) Si suponemos un 100% de eficiencia en la conversión de energía eléctrica en energía mecánica, ¿cuál es la intensidad de la corriente eléctrica consumida por el motor?

FÍSICA FÍSICA	CRITERIS DE CORRECCIÓ CRITERIOS DE CORRECCIÓN	

CRITERIOS GENERALES

- Se valorará prioritariamente, el planteamiento, desarrollo y discusión de los resultados.
- Los errores numéricos tendrán una importancia secundaria.
- La puntuación máxima de cada cuestión será de 2 puntos.

CUESTIÓN I

Expresar la energía cinética en términos de la velocidad del objeto y de su masa, hasta 0,75 puntos. Expresar la energía potencial electrostática en función de la masa y la altura, hasta 0,75 puntos. Explicar que la diferencia entre estas energías debe disiparse en forma de calor, hasta 0,5 puntos.

CUESTIÓN II

Saber aplicar la ley de la gravitación y la segunda ley de Newton a un objeto de masa arbitraria para obtener la aceleración del mismo, hasta 1 punto. Despejar correctamente esta aceleración en términos de la aceleración de la gravedad terrestre g, hasta 0,5 puntos. Comparar el peso de una persona en la Tierra y en el nuevo planeta, hasta 0.5 puntos.

CUESTIÓN III

El cálculo de la longitud de onda, hasta 0,5 puntos. El cálculo del periodo, hasta 0,5 puntos. El cálculo de la frecuencia, hasta 0,5 puntos. Y el cálculo de la velocidad de la onda, hasta 0,5 puntos.

CUESTIÓN IV

Expresar el campo eléctrico generado por una carga eléctrica puntual, 0,5 puntos. Analizar la suma y cancelación de los distintos vectores de campo eléctrico, hasta 1 punto. Dar el valor de la carga Q₁, 0,5 puntos.

CUESTIÓN V

Expresar la potencia mecánica, a partir de la variación de la energía potencial gravitatoria con el tiempo, en función de la velocidad, 1 punto. Igualar esta potencia a la potencia eléctrica y calcular la intensidad de la corriente que pasa por el motor, hasta 1 punto.

FÍSICA FÍSICA

PROVES D'ACCÉS PER A MAJORS DE 25 ANYS PRUEBAS DE ACCESO PARA MAYORES DE 25 AÑOS

60 minuts 60 minutos

IMPORTANT

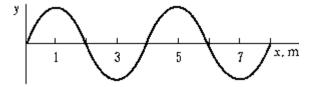
En el termini màxim d'una hora, l'alumne ha de resoldre les cinc qüestions proposades. Cada qüestió degudament justificada i raonada es qualificarà amb un màxim de 2 punts. Es valorarà la claredat del raonament seguit i, si escau, l'adequada utilització de les unitats.

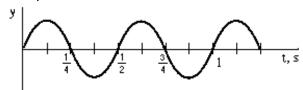
QÜESTIÓ I

En una erupció volcànica s'expulsa verticalment cap amunt un tros de 2 kg d'una roca volcànica porosa amb una velocitat inicial de 40 m/s, i arriba a una altura màxima de 50 m abans que comence a caure cap a la terra.

- a) Quina és l'energia cinètica inicial de la roca?
- **b)** Quina és l'energia potencial gravitatòria de la roca, adquirida durant l'ascens, en el punt de màxima altura?
- c) Quanta energia tèrmica s'ha generat a causa del fregament de l'aire durant l'ascens?

Dada: L'acceleració de la gravetat en la superfície terrestre és de 9,81 m/s².

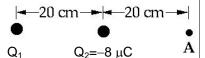

QÜESTIÓ II


Suposem que la Terra, mantenint la seua massa actual, fóra comprimida fins a la mitat del seu radi.

- a) Quina seria l'acceleració de la gravetat en la superfície d'aquest nou planeta més compacte respecte a l'acceleració gravitatòria terrestre original?
- b) Quin seria el pes d'una persona en aquest planeta comparat amb el que té a la Terra?

QÜESTIÓ III

Una ona viatja amb una velocitat de propagació v en la direcció positiva de l'eix x. El gràfic de l'esquerra mostra el desplaçament y respecte a la distància x per a un instant de temps donat. El gràfic de la dreta mostra el desplaçament y en funció del temps t per a una posició donada x.



- a) Quina és la longitud d'ona de l'ona?
- b) Quin és el període de l'ona?
- c) Quant val la freqüència?
- d) Quina és la velocitat de l'ona?

QÜESTIÓ IV

Dues càrregues puntuals estàtiques, Q_1 i Q_2 , es disposen en l'espai tal com s'indica en la figura adjunta. Si el camp elèctric en el punt A és nul, quin és el valor de la càrrega Q_1 ?

QÜESTIÓ V

Un motor, connectat a una diferència de potencial de 220 V està elevant una massa de 35 kg, compensant la força gravitatòria terrestre, a una velocitat constant de 6 m/s.

- a) Quina és la potència mecànica desenvolupada pel motor?
- b) Si suposem un 100% d'eficiència en la conversió d'energia elèctrica en energia mecànica, quina és la intensitat del corrent elèctric consumit pel motor?

FÍSICA FÍSICA	CRITERIS DE CORRECCIÓ CRITERIOS DE CORRECCIÓN	

CRITERIS GENERALS

- Es valorarà prioritàriament, el plantejament, desenvolupament i discussió dels resultats.
- Els errors numèrics tindran una importància secundària.
- La puntuació màxima de cada qüestió serà de 2 punts.

<u>QÜESTIÓ I</u>

Expressar l'energia cinètica en termes de la velocitat de l'objecte i de la seua massa, fins a 0,75 punts. Expressar l'energia potencial electrostàtica en funció de la massa i l'altura, fins a 0,75 punts. Explicar que la diferència entre aquestes energies ha de dissipar-se en forma de calor, fins a 0,5 punts.

QÜESTIÓ II

Saber aplicar la llei de la gravitació i la segona llei de Newton a un objecte de massa arbitrària per a obtindre l'acceleració d'aquest, fins a 1 punt. Aclarir correctament aquesta acceleració en termes de l'acceleració de la gravetat terrestre g, fins a 0,5 punts. Comparar el pes d'una persona en la Terra i en el nou planeta, fins a 0,5 punts.

QÜESTIÓ III

El càlcul de la longitud d'ona, fins a 0,5 punts. El càlcul del període, fins a 0,5 punts. El càlcul de la freqüència, fins a 0,5 punts. I el càlcul de la velocitat de l'ona, fins a 0,5 punts.

QÜESTIÓ IV

Expressar el camp elèctric generat per una càrrega elèctrica puntual, 0.5 punts. Analitzar la suma i cancel·lació dels distints vectors de camp elèctric, fins a 1 punt. Donar el valor de la càrrega Q_1 , 0.5 punts.

QÜESTIÓ V

Expressar la potència mecànica, a partir de la variació de l'energia potencial gravitatòria amb el temps, en funció de la velocitat, 1 punt. Igualar aquesta potència a la potència elèctrica i calcular la intensitat del corrent que passa pel motor, fins a 1 punt.